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The formation of doubly-periodic patterns on the surface of a fluid layer with a
uniform velocity field and constant depth is considered. The fluid is assumed to be
inviscid and the flow irrotational. The problem of steady patterns is shown to have
a novel variational formulation, which includes a new characterization of steady
uniform mean flow, and steady uniform flow coupled with steady doubly periodic
patterns. A central observation is that mean flow can be characterized geometrically
by associating it with symmetries. The theory gives precise information about the
role of the ten natural parameters in the problem which govern the wave–mean
flow interaction for steady patterns in finite depth. The formulation is applied to the
problem of interaction of capillary–gravity short-crested waves with oblique travelling
waves, leading to several new observations for this class of waves. Moreover, by
including oblique travelling waves and short-crested waves in the same analysis, new
bifurcations of short-crested waves are found, which give rise to mixed waves which
may have complicated spatial structure.

1. Introduction
Although great progress has been made in understanding two-dimensional water

waves – particularly steady two-dimensional waves – there is an extraordinary number
of open questions about three-dimensional ocean waves and patterns – with two
horizontal and one vertical direction. In this paper we address several questions
about steady three-dimensional water waves, particularly when the depth is finite,
and mean flow effects become important. The fluid is assumed to be inviscid and the
flow irrotational. In the two-dimensional case, steady periodic travelling waves can
be viewed either as waves on a quiescent fluid that are moving but steady relative to
a moving frame, or, the basic flow can be taken to be a uniform flow of depth h0 and
speed u0, and then the wave can be considered as a stationary periodic wave on the
uniform flow, in a fixed reference frame. It is this latter view that we generalize to two
horizontal space dimensions. The main class of waves we consider are doubly periodic
patterns on a finite-depth fluid, and our goals in this paper are fourfold: (a) to derive
a variational principle for uniform flows with two horizontal directions which form a
basic model for mean flow – indeed our theory gives a novel answer to the question:
what is mean flow?, (b) to derive a variational principle for doubly periodic patterns
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Figure 1. Schematic of a short-crested Stokes’ wave propagating in the x-direction.

coupled with a mean flow, (c) to develop a theory which identifies all the parameters
in the problem and their rôle – indeed our theory identifies ten parameters! – and (d)
to apply this theory to the problem of short-crested Stokes waves on finite-depth
water (including shallow water), where there are many open questions about the
implications of mean flow for these waves.

The paradigm of the steady three-dimensional doubly periodic wave is the short-
crested Stokes wave. This wave, which arises at the linear level from the superposition
of two oblique travelling waves with the same wavenumber and the same amplitude,
is a symmetric doubly periodic wave. A schematic of the linear superposition of two
such linear waves is shown in figure 1. Special cases of course occur when both waves
travel in opposite directions (the resulting wave is a standing wave) or when both
waves travel in nearly the same direction.

Short-crested waves are of great interest in a range of maritime applications. They
are known to affect sediment transport, appear in wave reflection by a sea-wall,
and are relevant to remote sensing in the open ocean (cf. Silvester 1975, 1977; Hsu,
Tsuchiya & Silvester 1979; Halliwell & Machen 1981; Silvester & Hsu 1997; Ioualalen
et al. 1999). In particular, Ioualalen et al. (1999) showed how three-dimensionality
could play a crucial role in altimetry by introducing a substantial bias to the sea-
level and wind modulus measurements. Recent results on the theory of short-crested
gravity Stokes waves and their linear stability include Hsu et al. (1979), who obtained
a third-order approximation to short-crested waves by using a classical perturbation
method, Roberts (1983) and Roberts & Schwartz (1983), who computed numerically
short-crested waves in deep water, Roberts & Peregrine (1983), who considered the
limit as both oblique waves become almost parallel, Marchant & Roberts (1987),
who computed numerically short-crested waves in water of finite depth, Ioualalen &
Kharif (1993, 1994), Badulin et al. (1995) and Ioualalen, Roberts & Kharif (1996),
who studied the linear instability of short-crested waves. Experimental results on
short-crested Stokes waves have recently been reported by Kimmoun, Branger &
Kharif (1999). In addition to the papers already quoted, there is the first paper to
our knowledge with rigorous results on three-dimensional waves: Reeder & Shinbrot
(1981) proved the existence of small-amplitude short-crested waves in a certain region
of parameter space. Sun (1993) provided an alternative construction of short-crested
waves. In both papers, the proof works outside a forbidden set which is given in § 7 of
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Reeder & Shinbrot (1981) (see also § 6 of the review article of Dias & Kharif 1999).
Roughly speaking, the forbidden set consists of the parameters which allow resonances
between harmonics. Longuet-Higgins & Phillips (1962) considered more general three-
dimensional waves, resulting from the interaction of two weakly nonlinear waves in
deep water, with differing wavenumbers and differing amplitudes. Hogan, Gruman
& Stiassne (1988) generalized the work of Longuet-Higgins & Phillips (1962) by
introducing surface tension. Other classes of steady three-dimensional water waves
have been introduced by Saffman & Yuen (1980) (see also the review articles by
Saffman & Yuen 1985 and Dias & Kharif 1999). The equivalent of short-crested
waves in shallow water – and much more general patterns – have been studied as
solutions of the Kadomtsev–Petviashvili (KP) equation, which is a model equation
for weakly oblique shallow water waves. A comprehensive study of three-dimensional
shallow-water waves in the context of the KP model has been given by Bryant (1982),
Segur & Finkel (1985), Hammack, Scheffner & Segur (1989), Hammack et al. (1995)
and Dubrovin, Flickinger & Segur (1997). A review of three-dimensional long waves
is given in Akylas (1994).

The starting point for the analysis in this paper is the inviscid, irrotational, constant-
density equations for steady water waves governed by a velocity potential and free-
surface elevation. However, we formulate these equations in a new way. In § 2, we
show that the complete set of equations for steady water waves can be expressed in
the compact form

J(u)Zx + K(v)Zy = ∇S(Z), (1.1)

where u and v are the fluid velocities in the x and y horizontal directions respectively
at the free surface, S(Z) is a functional, and Z is a vector of dependent variables
(including the surface elevation and the velocity potential, but other variables as well).
A central observation in the construction is that J(u) and K(v) are skew-symmetric
operators – with respect to a particular inner product – and, more importantly, the
products J(u)∂x and K(v)∂y have the remarkable property that they are symmetric
operators! The form (1.1) is a generalized Hamiltonian formulation known as a
Hamiltonian system on a multi-symplectic structure.

One of the main reasons for identifying a variational or symplectic structure is that
they lead to operators that are symmetric. Recall the situation in finite dimensions.
A standard Hamiltonian system on R2n can be written in the form

JZt = ∇H(Z), Z ∈ R2n, (1.2)

where ∇H(Z) is the gradient of the function H with respect to a standard inner
product on R2n, and J is the unit skew-symmetric matrix:

J =

(
0 −I
I 0

)
∈ R2n×2n. (1.3)

The system (1.2) is ‘symmetric’ in the sense that Jd/dt is a symmetric operator – even
though J is skew-symmetric – and the Hessian of H is a symmetric matrix when

evaluated on any solution Ẑ . Symplecticity – as represented by the skew-symmetric
matrix J – assures immediately that (1.2) is the Euler–Lagrange equation associated
with a functional. To see this, let Z = (q, p), with q, p ∈ Rn and define the one-form
ω and its parametrization by Θ(Z ,Z t):

ω = p · dq and Θ(Z ,Z t) = p · qt. (1.4)

Then using the standard inner product on R2n – denoted by 〈·, ·〉 – it is straightforward
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to verify that

d

dε
Θ(Z + ε dZ ,Z t + ε dZ t)|ε=0 = 〈JZ t, dZ〉+

d

dt
ω

and
d

dε
H(Z + ε dZ)

∣∣
ε=0

= 〈∇H(Z), dZ〉.
Hence, taking variations dZ(t) which vanish at the endpoints t1, t2, (1.2) follows from
the first variation of the functional

F(Z) =

∫ t2

t1

[Θ(Z ,Z t)−H(Z)] dt, (1.5)

that is, (d/dε)F(Z + ε dZ)|ε=0 = 0 implies (1.2). Variational principles have been
widely used in the theory of water waves, starting with the Lagrangian formulation of
Luke (1967) and the averaged Lagrangian theory of Whitham (cf. Whitham 1974). A
variational formulation of the problem of short-crested waves has been provided by
Marchant & Roberts (1988, 1990) to predict the dynamics of short-crested waves. They
formulated the problem of the nonlinear interaction between incident and reflected
wavetrains by using the slowly varying averaged Lagrangian approach described
in the book by Whitham (1974). They considered two cases: the case where the
wavefield varies in the radial direction but has no angular variation, and the case
where the wavefield varies in the angular direction but has no radial variation. Mollo-
Christensen (1981) also applied Whitham’s theory to study the stability of weakly
nonlinear short-crested waves. However, as pointed out by Roberts (1983), his analysis
is deficient because it ignores modulations with a component in the other horizontal
direction and uses Whitham’s theory which is only appropriate for a wavefield defined
by a single phase function, whereas short-crested waves need two phase functions.

The Hamiltonian approach, based on the Zakharov (1968) formulation, has also
been widely used in the study of water waves, and has been applied to short-crested
waves by Badulin et al. (1995). In atmospheric and geophysical fluid dynamics,
Hamiltonian methods are widely used (cf. Salmon 1998).

The multi-symplectic formulation of water waves is a generalization of the Zakharov
(1968) symplectic structure. Indeed restriction of the full multi-symplectic structure
to the time direction alone recovers the Zakharov symplectic structure (cf. Bridges
1996, p. 543). In the multi-symplectic setting, a distinct symplectic operator is assigned
for each space direction as well as time (cf. Bridges 1996, 1997a, b, 1998), and this
provides much more structure and information about the equations. For the steady
patterns to be considered in this paper, the generalization of the above argument in
(1.2)–(1.5) leads to a PDE with a skew-symmetric operator associated with each space
direction, as shown in (1.1). This form of the equations leads to several new results.
In § 3 we associate symmetry with uniform flow – where uniform flow corresponds to
a constant depth h0 and a constant vector-valued velocity (u0, v0) – and by associating
mean flow with uniform flow, a new variational principle for uniform flows is derived
which relies crucially on the form (1.1).

By coupling the argument in § 3 with a variational characterization of doubly
periodic patterns, in § 4, we present a new formulation for steady doubly periodic
patterns on a finite-depth fluid with a novel characterization of the coupled mean
flow. In fact, this uniform pattern is characterized by a new constrained variational
principle, where the constraints are the mass-flux vector and the Bernoulli functional.

An important consequence of the variational principle is a precise organization of
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the parameter structure: the theory shows that there are precisely ten parameters which
come in dual pairs of which five are fixed (one of each dual pair). As far as we are
aware this is the first time that the parameter structure for steady three-dimensional
doubly periodic waves has been precisely identified. The wavenumbers of the pattern
are Lagrange multipliers associated with the constraints of constant wave-action flux.
This formulation is applied in § 6 to give a new characterization of short-crested Stokes
waves interacting with a mean flow. In this context an interaction between a periodic
wave and a mean flow means that the two classes of solutions – (i) a mean depth and
mean velocity field and (ii) the periodic wave – exist as a coupled system. No time-
dependent interaction is implied here – only dependence between the two solutions.

The formation of a doubly periodic wave on the surface of the ocean is closer
in spirit to the subject of pattern formation than to wave mechanics. Therefore we
use the terms wave and pattern interchangeably, with preference for pattern when
discussing multi-periodic states.

A doubly periodic pattern can be expressed as a double Fourier series, and – unlike
a Fourier series in one variable – such solutions are associated with a doubly periodic
lattice (i.e. rhombic, rectangular, hexagonal). There is intriguing evidence to suggest
that hexagonal waves as well as rhombic (or diamond) patterns are important in
the theory of shallow water oceanographic patterns. For example Hammack et al.
(1989, 1995) present a compelling argument in favour of hexagonal patterns, and
Allen (1984, p. 398) presents fascinating evidence for rhombic patterns. Both of these
patterns deserve further study as solutions of the full water wave problem – particularly
their stability properties. In this paper we concentrate on rhombic patterns which are
a model for short-crested waves.

In § 6, we restrict the variational principle of § 4 to a rhombic periodic lattice. At
the linear level this leads to a pattern height of the form

η(x, y) = A1e
i(κx+`y) + A2e

i(κx−`y) + A1e
−i(κx+`y) + A2e

−i(κx−`y), (1.6)

where A1 and A2 are complex amplitudes. A weakly nonlinear analysis starting with
this form shows that there are two classes of nonlinear patterns: oblique travelling
waves (A2 = 0 and A1 6= 0 or A1 = 0 and A2 6= 0) and short-crested waves
(|A1| = |A2|). In other words both classes of waves are included in the same analysis.
One consequence of this approach is that it is possible to find secondary bifurcations
that connect these two families at finite amplitude. It is important to note that the
limiting process in which both oblique waves become parallel is tricky and does not
provide pure travelling waves – but this limit is not considered in this paper (see
Roberts 1983 and Roberts & Peregrine 1983 for an analysis of this limit). However
we do consider another interesting limit: oblique travelling waves are obtained when
one wave component, A1 or A2, vanishes.

An overview of the paper is as follows. In § 2 the governing equations for steady
three-dimensional inviscid irrotational water waves with gravity and surface tension
are recalled. These equations are then formulated as a Hamiltonian system on a multi-
symplectic structure. In § 3 we introduce the concept of a uniform pattern and a vari-
ational principle for such patterns. In § 4 a global (for arbitrary amplitude) variational
principle for doubly periodic patterns coupled with a mean flow is obtained. Particular
cases of such patterns are short-crested waves in finite depth. In § 5 we analyse the
dispersion relation for the linearization about the flat state, and in §§ 6 and 7 we apply
the variational principle of § 4 to weakly nonlinear patterns which extend the form
(1.6) to nonlinear patterns. We do not consider the linear stability of patterns, but we
discuss in § 8 how the present formulation can contribute to a linear stability analysis.
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2. Governing equations for steady three-dimensional capillary–gravity
patterns

The starting point for the analysis is the governing equations for steady three-
dimensional (two surface directions in addition to the vertical direction) patterns at
the surface of a constant-density inviscid irrotational fluid, including surface-tension
effects at the surface.

Let (x, y) ∈ R2 denote the horizontal coordinates and z ∈ R, with 0 6 z 6 η(x, y),
denote the vertical coordinate, where η(x, y) is the single-valued position of the surface.
With velocity potential φ(x, y, z), the governing equations and boundary conditions
for steady patterns take the following well-known form:

∆φ
def
= φxx + φyy + φzz = 0 for 0 < z < η(x, y). (2.1)

At the bottom z = 0, the boundary condition is

φz = 0 at z = 0. (2.2)

The kinematic condition at the free surface is

φxηx + φyηy − φz = 0 at z = η(x, y) (2.3)

and the dynamic condition at the free surface is

1
2
(φ2

x + φ2
y + φ2

z) + gη − σ
(
∂w1

∂x
+
∂w2

∂y

)
− p = 0 at z = η(x, y) (2.4)

where

w1
def
=

ηx√
1 + η2

x + η2
y

and w2
def
=

ηy√
1 + η2

x + η2
y

, (2.5)

and the function p satisfies

px = 0 and py = 0. (2.6)

While the equations (2.6) suggest that p is a constant, it is important to distinguish
between the function p and its value. The value of p is the Bernoulli constant.
The parameters g and σ represent the gravitational and surface-tension coefficients
respectively.

In the remainder of this section, the governing equations are reformulated in order
to derive a natural structure for the analysis of patterns. This reformulation involves
introducing new variables. The new variables make it possible to cast the equations
into a standard form from which some new interesting results are deduced. However
it is important to keep in mind that, once the results are deduced, they can be
transformed back into the standard coordinates. Let

u = φx, v = φy, u = u|z=η, v = v|z=η, Φ = φ|z=η, (2.7)

and

η = ∇ · γ =
∂γ1

∂x
+
∂γ2

∂y
. (2.8)

Then collect the set of dependent variables into the vector-valued function Z:

(Φ, η, γ1, γ2, p, w1, w2, φ, u, v). (2.9)

Note that p is included in (2.9) as a dependent variable. However, the most curious
new variables are γ1 and γ2. The vector γ = (γ1, γ2) is a vector-valued potential for the
free surface, reminiscent of the potential for the velocity field. While a potential for
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the velocity field is widely used, the idea of using a potential-type field for the free
surface elevation is new. This form for the surface elevation has interesting theoretical
implications: it leads to a geometrical characterization of the mean flow.

We show that the governing equations can be written in the form

J(u)Zx + K(v)Zy = ∇S(Z), (2.10)

where the vector-valued function Z is defined in (2.9), J(u) and K(v) are skew-
symmetric operators, and S(Z) is a scalar-valued function. Moreover the form of the
equations (2.10) follows from the first variation of the functional

F(Z) =

∫ y2

y1

∫ x2

x1

[Θ1(Z , Zx) +Θ2(Z , Zy)− S(Z)] dx dy; (2.11)

that is, (d/dε)F(Z + ε dZ)|ε=0 = 0 leads to (2.10). Explicit expressions for J(u), K(v)
and ∇S(Z) are given in Appendix A.

To verify this new form of the governing equations and to define the terms involved,
we need an inner product: for ten-component vector-valued functions of the form
(2.9), let

〈Z ,W 〉 =

7∑
j=1

ZjWj +

∫ η

0

(Z8W8 + Z9W9 + Z10W10) dz. (2.12)

Introduce the following pair of one-forms:

ω1 =

∫ η

0

u dφ dz + σw1 dη + p dγ1 and ω2 =

∫ η

0

v dφ dz + σw2 dη + p dγ2, (2.13)

and the functional

S(Z) =

∫ η

0

1
2
(u2 + v2 − φ2

z) dz − 1
2
gη2 + pη + σ(1−

√
1− w2

1 − w2
2). (2.14)

In the integrand of the functionalF(Z) in (2.11), the terms Θ1(Z,Zx) and Θ2(Z,Zy)
are parametrizations of the one-forms ω1 and ω2:

Θ1(Z , Zx) =

∫ η

0

uφx dz + σw1

∂η

∂x
+ p

∂γ1

∂x
,

Θ2(Z , Zy) =

∫ η

0

vφy dz + σw2

∂η

∂y
+ p

∂γ2

∂y
.

 (2.15)

Now, using the inner product (2.12) it is straightforward to verify that

d

dε
Θ1(Z + ε dZ , Zx + ε dZx)

∣∣
ε=0

= 〈J(u)Zx, dZ〉+
∂

∂x
ω1,

d

dε
Θ2(Z + ε dZ , Zy + ε dZy)

∣∣
ε=0

= 〈K(v)Zy, dZ〉+
∂

∂y
ω2,

d

dε
S(Z + ε dZ)

∣∣
ε=0

= 〈∇S(Z), dZ〉,
hence

d

dε
F(Z + ε dZ)

∣∣
ε=0

=

∫ y2

y1

∫ x2

x1

〈J(u)Zx + K(v)Zy − ∇S(Z), dZ〉 dx dy

+

∫ y2

y1

∫ x2

x1

(
∂ω1

∂x
+
∂ω2

∂y

)
dx dy.
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By taking variations dZ which vanish at the endpoints x1, x2, y1, y2, the second term
on the right-hand side vanishes, verifying that the first variation of F(Z) leads
to (2.10).

It remains to verify that the system of ten equations (2.10) recovers the steady
equations (2.1)–(2.6). Writing out the system of ten equations in (2.10) leads to

−uηx − vηy = −φz|z=η, (2.16)

uΦx + vΦy − σ(w1)x − σ(w2)y = 1
2
(u2 + v2 + φ2

z)|z=η − gη + p, (2.17)

−px = 0, −py = 0, (2.18)

(γ1)x + (γ2)y = η, (2.19)

σηx = σw1/

√
1− w2

1 − w2
2 , (2.20)

σηy = σw2/

√
1− w2

1 − w2
2 , (2.21)

−ux − vy = φzz, (2.22)

φx = u, φy = v. (2.23)

Equation (2.16) is the kinematic condition (2.3) in terms of the new coordinates;
equation (2.18) recovers (2.6); equation (2.19) recovers the definition (2.8); equations
(2.20)–(2.21) recover the definitions (2.5); equation (2.22) is Laplace’s equation (2.1)
in terms of the new coordinates and (2.23) recovers the definitions in (2.7). To verify
(2.17), note that

Φx = [φx + φzηx]|z=η and Φy = [φy + φzηy]|z=η,
and so

uΦx + vΦy = (φ2
x + φ2

y + φ2
z)|z=η.

Using this identity, the dynamic condition (2.4) is recast as

uΦx + vΦy − 1
2
(u2 + v2 + φ2

z)|z=η + gη − σ[(w1)x + (w2)y]− p = 0,

which, upon rearrangement, is (2.17). Accompanying the system (2.10) are the bound-
ary conditions in (2.7) and the bottom boundary condition (2.2).

Equation (2.10) and the basic functionals (2.14)–(2.15) are the starting point for the
analysis in the paper. The system (2.10) is a Hamiltonian system on a multi-symplectic
structure (cf. Bridges 1996, 1997a, b, 1998). The operators J(u) and K(v) are skew
symmetric – with respect to the inner product (2.12) – and ∇S(Z) is the gradient of the
‘Hamiltonian’ functional S(Z). Multi-symplecticity is a generalization of Hamiltonian
structure which is natural for the analysis of pattern formation equations, because it
distinguishes between symplecticity in the x-direction and the y-direction: neglecting
Zy reduces (2.10) to a standard Hamiltonian system in the x-direction and neglecting
Zx reduces (2.10) to a standard Hamiltonian system in the y-direction.

A feature of the equations (2.10) that is important in what follows for characterizing
the mean flow is the presence of symmetry. The symmetries we use are the classical
ones (cf. Benjamin & Olver 1982). However, we decompose the conservation laws
in a new way which contributes to a geometric characterization of mean flow. Our
argument is that the mean flow corresponds to drift along the group orbit of a
symmetry of the equations.

It is apparent from (2.6) that the function p is a conserved quantity. Moreover,
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the steady equations should conserve mass flux. In the multi-symplectic setting, these
conservation laws are related to symmetry in the following way. Let

ξ1 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0)T ,

ξ2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T ,

ξ3 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)T .

 (2.24)

Then it is straightforward to verify that

J(u)ξ1 = ∇Q1(Z), J(u)ξ2 = ∇R(Z), J(u)ξ3 = 0, (2.25)

K(v)ξ1 = ∇Q2(Z), K(v)ξ2 = 0, K(v)ξ3 = ∇R(Z), (2.26)

where

R(Z) = p, Q1(Z) =

∫ η

0

u dz and Q2(Z) =

∫ η

0

v dz. (2.27)

The functional R(Z) is the Bernoulli functional and its value is the Bernoulli constant,
and the functionals Q1(Z) and Q2(Z) are the components of the mass flux. The
equations (2.25)–(2.26) connect these functionals with symmetry. The vectors ξ1, ξ2

and ξ3 in (2.24) are generators for a three-parameter affine group with action

GθZ = Z + θ1ξ1 + θ2ξ2 + θ3ξ3 ∀ θ = (θ1, θ2, θ3) ∈ R3. (2.28)

The functional S(Z) and the operators J(u) and K(v), and hence equation (2.10), are
invariant with respect to the action of this group. For example

S(GθZ) = S

(
Z +

3∑
j=1

θjξj

)
= S(Z), ∀ θ ∈ R3. (2.29)

The fact that (2.25)–(2.26) assure conservation of mass flux and conservation of the
Bernoulli functional follows by differentiating (2.29) with respect to each θj and using
the identities (2.25); for example with j = 1,

0 =
∂

∂θ1

S

(
Z +

3∑
j=1

θjξj

)∣∣∣∣
θ=0

= 〈∇S(Z), ξ1〉

= 〈J(u)Zx + K(v)Zy, ξ1〉
= −〈Zx, J(u)ξ1〉 − 〈Zy,K(v)ξ1〉
= −〈Zx,∇Q1(Z)〉 − 〈Zy,∇Q2(Z)〉
= −∂Q1

∂x
− ∂Q2

∂y
,

which corresponds to mass flux conservation. A similar argument with j = 2, 3 results
in ∂xR(Z) = 0 and ∂yR(Z) = 0. In the next two sections, these three symmetries are
related first to uniform patterns in § 3 and then to the interaction problem between
steady doubly periodic patterns and a mean flow.

Another conservation law, which is not used in this paper but follows in a straight-
forward way from this new formulation of the steady equations, is the conservation
of wave-action flux. The concept of wave action and wave-action flux was introduced
by Whitham (cf. Whitham 1974, Chap. 16), and it has since found wide application
in oceanographic and atmospheric flows (cf. Grimshaw 1984 and references therein),
and a geometric formulation was given in Bridges (1997b). A geometric formulation
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of conservation of wave-action flux (since only the steady equations are considered
here) in the present setting is obtained as follows.

Let Z(x, y, z; s) be a one-parameter family of solutions of (2.10) parametrized by s
and 2π-periodic in s,

Z(x, y, z; s+ 2π) = Z(x, y, z; s).

Then, conservation of wave-action flux takes the form

∂

∂x

∮
Θ1(Z , Zs) ds+

∂

∂y

∮
Θ2(Z , Zs) ds = 0, (2.30)

where
∮

ds is an integral over one period in s, and Θ1 and Θ2 are the functions
introduced in (2.11). The conservation law (2.30) is easily verified by using the
definition of Θ1(·, ·) and Θ2(·, ·) and noting that

∂

∂s
S(Z) = 〈∇S(Z), Zs〉 = 〈J(u)Zx, Zs〉+ 〈K(v)Zy, Zs〉,

and

∂

∂x
Θ1(Z , Zs) =

∂

∂s
Θ1(Z , Zx)− 〈J(u)Zx, Zs〉,

∂

∂y
Θ2(Z , Zs) =

∂

∂s
Θ2(Z , Zy)− 〈K(v)Zy, Zs〉.

Hence

∂

∂x
Θ1(Z , Zs) +

∂

∂y
Θ2(Z , Zs) =

∂

∂s
[Θ1(Z , Zx) +Θ2(Z , Zy)− S(Z)],

and the right-hand side vanishes when integrated over a period in s. Because of the
importance of wave-action conservation for periodic waves, there is good reason to
conjecture that the conservation of wave-action flux is important for the analysis of
steady doubly periodic patterns, but this is not considered here.

3. Uniform patterns
The purpose of this section is twofold: to show in the simplest possible setting how

symmetry is crucially related to mean flow, and secondly to generalize the concept
of uniform flows in hydraulics to two horizontal space dimensions – uniform patterns.
Uniform flows are defined to be solutions of the steady equations (2.10) which are
independent of x and y.

Setting Zx = Zy = 0 in (2.10) shows that such states correspond to critical points
of the functional S(Z). Using the expression for ∇S(Z) in Appendix A, it is clear that
the only solution of ∇S(Z) = 0 is the trivial state,

u = v = η = p = 0 with φ, Φ, γ1 and γ2 constant.

However there is a second class of uniform flows which are associated with the
three-parameter symmetry group (2.27). Let

Z(x, y) = Gθ(x,y)Z0 = Z0 + θ1(x, y)ξ1 + θ2(x, y)ξ2 + θ3(x, y)ξ3, (3.1)

where Z0 is some constant vector to be determined. This expression corresponds to
an (x, y)-dependent flow along the Gθ group orbit. Take this flow to be linear in x
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and y. We are interested in characterizing the mean velocity and elevation; therefore
let

θ1(x, y) = u0x+ v0y + θo1 , θ2(x, y) = h0x+ θo2 and θ3 = θo3 , (3.2)

where θo1, θo2 and θo3 are arbitrary real numbers. Then

J(u)Zx = J(u)

[
∂θ1

∂x
ξ1 +

∂θ2

∂x
ξ2

]
= u0J(u)ξ1 + h0J(u)ξ2 = u0∇Q1(Z0) + h0∇R(Z0),

using (2.25); similarly,

K(v)Zy = K(v)

[
∂θ1

∂y
ξ1

]
= v0K(v)ξ1 = v0∇Q2(Z0).

The function S(Z) is Gθ-invariant and so ∇S(Gθ(x,y)Z0) = ∇S(Z0). Therefore substi-
tution of (3.1) and (3.2) into (2.10) results in the following equation for Z0:

∇S(Z0) = u0∇Q1(Z0) + v0∇Q2(Z0) + h0∇R(Z0). (3.3)

This equation could have been obtained by simply substituting u = u0, v = v0 and
h = h0 into the governing steady equations. However this would not produce the form
of the equations (3.3). The form (3.3) is interesting because it has the form of the
Lagrange necessary condition for a constrained variational principle, with (h0, u0, v0)
as Lagrange multipliers. Note that θo3 has no dynamic significance and can therefore
be set to zero.

We show that (h0, u0, v0) correspond to a uniform pattern; that is, a constant vector-
velocity field (u0, v0) and a constant depth h0. In the present context the values of
the functionals R(Z0), Q1(Z0) and Q2(Z0) determine values of the mean quantities
h0, u0 and v0. In other words: a uniform pattern of the above form corresponds to a
critical point of S(Z0) restricted to level sets of the three functionals R(Z0), Q1(Z0)
and Q2(Z0). This state is uniform because the x and y dependence in (3.1) is along
the group orbit: the potentials φ, γ1 and γ2 are linear functions of x and y.

Using the expressions for ∇S , ∇R, ∇Q1 and ∇Q2, it is straightforward to solve (3.3)
for Z0; we find

Z0 = (0, h0, 0, 0, p0, 0, 0, 0, u0, v0)
T with p0 = gh0 + 1

2
(u2

0 + v2
0), (3.4)

and h0, u0 and v0 are determined by the values of the constraint sets:

r = R(Z0) = p0, q1 = Q1(Z0) = u0h0 and q2 = Q2(Z0) = v0h0, (3.5)

where (r, q1, q2) correspond to values of the three functionals R, Q1 and Q2. Evaluating
the functional S on this state we find

S0 = S(Z0) = p0h0 + 1
2
h0(u

2
0 + v2

0)− 1
2
gh2

0 = 1
2
gh2

0 + h0(u
2
0 + v2

0).

The above constrained variational principle is non-degenerate precisely when the
Jacobian of (R,Q1, Q2) with respect to the parameters (h0, u0, v0) is non-zero. This
Jacobian takes the form

∂R

∂h0

∂R

∂u0

∂R

∂v0

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0


=

 g u0 v0

u0 h0 0

v0 0 h0

 , (3.6)
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and

det



∂R

∂h0

∂R

∂u0

∂R

∂v0

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0


= gh2

0[1− (u2
0 + v2

0)gh0]. (3.7)

If we define a Froude number based on the magnitude of the velocity, [(u2
0+v2

0)/gh0]
1/2,

then this determinant vanishes precisely when the Froude number is unity. In other
words, degeneracy of the variational principle for uniform patterns is related to a form
of criticality of the uniform patterns. A natural generalization of sub-criticality – from
uniform flows in one space dimension to uniform patterns in two space dimensions – is

det



∂R

∂h0

∂R

∂u0

∂R

∂v0

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0


> 0. (3.8)

Although subcriticality is important for determining when periodic gravity waves can
occur in the linearization about a uniform flow in one space dimension, we show
in § 5 that criticality plays a less important role in the linearization about uniform
patterns.

The Lagrange multiplier theory gives further parameter structure. In particular,

h0 =
∂S0

∂r
, u0 =

∂S0

∂q1

and v0 =
∂S0

∂q2

.

Therefore an equivalent condition for subcriticality is

det[Hess(S0)] = det



∂2S0

∂r2

∂2S0

∂r∂q1

∂2S0

∂r∂q2

∂2S0

∂q1∂r

∂2S0

∂q2
1

∂2S0

∂q1∂q2

∂2S0

∂q2∂r

∂2S0

∂q2∂q1

∂2S0

∂q2
2


> 0. (3.9)

To summarize, there is a three-parameter family of uniform patterns of the form

Z(x, y) = Z0 + θ1(x, y)ξ1 + θ2(x)ξ2, (3.10)

with θ1(x, y) and θ2(x) given by (3.2) and Z0 given by (3.4) as a function of (h0, u0, v0)
with the values of the mean quantities determined by the values of the parameters
(r, q1, q2). Note that θo3 has been set to zero, since it has no dynamic significance.
This uniform pattern is non-degenerate precisely when the determinant (3.7) is non-
zero, and this condition is related to criticality for uniform patterns in two space
dimensions. In the next section, we consider the coupled problem, where the uniform
pattern is changed by a nonlinear doubly periodic pattern.
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4. Steady doubly periodic patterns coupled to a mean flow
In the case of one horizontal space dimension, periodic travelling waves can be

viewed in two equivalent ways. If the basic fluid is considered to be at rest, the
travelling wave is steady relative to a reference frame moving at the wave speed.
On the other hand, if the basic flow is a uniform flow of depth h0 and speed u0,
the wave can be considered as a stationary periodic wave on the uniform flow, in a
fixed reference frame. It is this latter view that we generalize to two horizontal space
dimensions in this section.

When a doubly periodic pattern forms on a uniform pattern, the two patterns
are coupled, leading to changes in the uniform pattern – that is, a pattern-generated
mean flow. In this section, the coupled problem is formulated. The complete pattern
is composed of a doubly periodic pattern with wavenumber (κ, `), a mean elevation
h0 and a vector-valued velocity (u0, v0).

In general, doubly periodic patterns are supported by a periodic lattice which is
constructed with the symmetry of any of the basic wallpaper groups; in particular the
basic lattice is either rectangular, rhombic or hexagonal (cf. Armstrong 1988, § 25).
If the basic fluid state is taken to be quiescent, there is no preferred direction in the
horizontal plane and therefore any of these lattices would be admissible. However,
for doubly periodic patterns on a uniform pattern, there is a preferred direction
imposed by the uniform velocity field (u0, v0). The preferred direction restricts the
lattice type to be rhombic. In fact such patterns correspond precisely to short-crested
Stokes waves in finite depth interacting with a mean flow; that is, steady rhombic
patterns superposed on (and interacting with) a uniform pattern correspond to a
new characterization of short-crested Stokes waves in finite depth. Moreover, this
characterization is for short-crested waves of arbitrary amplitude.

The basic pattern (3.1) is generalized as follows. Let

Z(x, y) = Gθ(x,y)Ẑ(x̂, ŷ) = Ẑ(x̂, ŷ) + θ1(x, y)ξ1 + θ2(x)ξ2, (4.1)

where θ1(x, y) and θ2(x) are defined exactly as in (3.2), although the values of h0, u0 and

v0 are determined by the coupled problem here. The function Ẑ(x̂, ŷ) is 2π-periodic
in x̂ and ŷ and

x̂ = κx+ x̂o and ŷ = `y + ŷo, (4.2)

where x̂o and ŷo are arbitrary real numbers and (κ, `) is the wavenumber vector for

the steady doubly periodic pattern. To determine an equation for Ẑ(x̂, ŷ) we substitute
(4.1) into (2.10). Considering each term in (2.10) separately we find

J(u)Zx = κJ(u)
∂Ẑ

∂x̂
+ u0J(u)ξ1 + h0J(u)ξ2

= κJ(u)
∂Ẑ

∂x̂
+ u0∇Q1(Ẑ) + h0∇R(Ẑ),

K(v)Zy = `K(v)
∂Ẑ

∂ŷ
+ v0K(v)ξ1 = `K(v)

∂Ẑ

∂ŷ
+ v0∇Q2(Ẑ),

and since S(Z) is Gθ-invariant, ∇S(Z) = ∇S(Ẑ). Therefore (2.10) reduces to

κJ(u)
∂Ẑ

∂x̂
+ `K(v)

∂Ẑ

∂ŷ
= ∇S(Ẑ)− h0∇R(Ẑ)− u0∇Q1(Ẑ)− v0∇Q2(Ẑ). (4.3)
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This equation is the governing equation for the doubly periodic function Ẑ(x̂, ŷ).
However, equation (4.3) can also be viewed as the Lagrange necessary condition for
a constrained variational principle.

We showed in § 2 that the gradient of the functional with integrand Θ1(Z , Zx) +
Θ2(Z , Zy) resulted in the left-hand side of (2.10). Therefore define

A1(Ẑ) =

∫
T2

Θ1(Ẑ , Ẑx̂) dx̂ dŷ and A2(Ẑ) =

∫
T2

Θ2(Ẑ , Ẑŷ) dx̂ dŷ, (4.4)

where ∫
T2

· dx̂ dŷ = 1(2π)2

∫ 2π

0

∫ 2π

0

· dx̂ dŷ. (4.5)

Since we are now interested in doubly periodic functions, we include integration
over T2 in the inner product:

[W ,Z]
def
=

∫
T2

〈W ,Z〉 dx̂ dŷ (4.6)

where 〈·, ·〉 is the inner product in (2.12).

The functionals A1(Ẑ) and A2(Ẑ) correspond to the two components of wave-
action flux evaluated on a doubly periodic pattern.

With respect to the inner product (4.6), the left-hand side of (4.3) can be charac-
terized as the gradient of a functional; in particular, (4.3) takes the form

∇S(Ẑ) = κ∇A1(Ẑ) + `∇A2(Ẑ) + h0∇R(Ẑ) + u0∇Q1(Ẑ) + v0∇Q2(Ẑ), (4.7)

where the gradients of R, Q1 and Q2 are to be interpreted with respect to the inner
product (4.6). Script symbols are used for functionals that are averaged over T2.

Doubly-periodic patterns coupled to a mean flow can therefore be characterized
as critical points of S restricted to level sets of the five functionals: A1, A2, R, Q1

and Q2, with κ, `, h0, u0 and v0 as Lagrange multipliers, and (4.7) is the Lagrange
necessary condition. The non-degeneracy condition for this variational principle is a
generalization of that in § 3:

det



∂A1

∂κ

∂A1

∂`

∂A1

∂h0

∂A1

∂u0

∂A1

∂v0

∂A2

∂κ

∂A2

∂`

∂A2

∂h0

∂A2

∂u0

∂A2

∂v0

∂R
∂κ

∂R
∂`

∂R
∂h0

∂R
∂u0

∂R
∂v0

∂Q1

∂κ

∂Q1

∂`

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂κ

∂Q2

∂`

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0


6= 0. (4.8)

The Lagrange multiplier theory gives further parameter structure; in particular

κ =
∂S
∂a1

, ` =
∂S
∂a2

, h0 =
∂S
∂r
, u0 =

∂S
∂q1

and v0 =
∂S
∂q2

, (4.9)

where a1, a2, r, q1 and q2 are the values of the constraint sets A1(Ẑ), A2(Ẑ), R(Ẑ),



Three-dimensional water-wave patterns 159

Q1(Ẑ) and Q2(Ẑ). Hence, an equivalent non-degeneracy condition is

det[Hess(S)] = det



∂2S
∂a2

1

∂2S
∂a1∂a2

∂2S
∂a1∂r

∂2S
∂a1∂q1

∂2S
∂a1∂q2

∂2S
∂a2∂a1

∂2S
∂a2

2

∂2S
∂a2∂r

∂2S
∂a2∂q1

∂2S
∂a2∂q2

∂2S
∂r∂a1

∂2S
∂r∂a2

∂2S
∂r2

∂2S
∂r∂q1

∂2S
∂r∂q2

∂2S
∂q1∂a1

∂2S
∂q1∂a2

∂2S
∂q1∂r

∂2S
∂q2

1

∂2S
∂q1∂q2

∂2S
∂q2∂a1

∂2S
∂q2∂a2

∂2S
∂q2∂r

∂2S
∂q2∂q1

∂2S
∂q2

2



6= 0. (4.10)

There are other ways to interpret the equation (4.7). For example, the values of κ,
`, h0, u0 and v0 can be prescribed (instead of the values of the functionals). In this
case, the functional

F(Ẑ , κ, `, h0, u0, v0) =S(Ẑ)− κA1(Ẑ)− `A2(Ẑ)− h0R(Ẑ)− u0Q1(Ẑ)− v0Q2(Ẑ)

is an unconstrained functional, and the values of the functionalsA1(Ẑ),A2(Ẑ), R(Ẑ),

Q1(Ẑ) and Q2(Ẑ) would be determined by the solution. In general, the parameters
come in pairs:

(κ,A1) (`,A2) (h0,R) (u0,Q1) (v0,Q2), (4.11)

and one of each pair can be prescribed – but not both – and the other of each pair
is determined by the solution. In other words, the variational structure organizes the
ten parameters – which define the pattern–mean flow interaction – in a precise way.

To see how the matrices in (4.8) and (4.10) contribute to the analysis, consider
the pattern–mean flow interaction problem near the flat state. At the flat state, the
functionalsA1 andA2 vanish and the functionals R, Q1 and Q2 take values, r, q1 and
q2 respectively, associated with the uniform pattern (h0, u0, v0). Now, evaluate each
functional A1, . . . ,Q2 on this solution and expand these functionals in a Taylor series
near the flat state:


A1(κ, `, h0, u0, v0)

A2(κ, `, h0, u0, v0)

R(κ, `, h0, u0, v0)

Q1(κ, `, h0, u0, v0)

Q2(κ, `, h0, u0, v0)

=


0
0
r
q1

q2

+



∂A1

∂κ

∂A1

∂`

∂A1

∂h0

∂A1

∂u0

∂A1

∂v0

∂A2

∂κ

∂A2

∂`

∂A2

∂h0

∂A2

∂u0

∂A2

∂v0

∂R
∂κ

∂R
∂`

∂R
∂h0

∂R
∂u0

∂R
∂v0

∂Q1

∂κ

∂Q1

∂`

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂κ

∂Q2

∂`

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0




δκ

δ`

δh0

δu0

δv0

+ · · · .

Then, if (I1, . . . , I5) are the prescribed values of the five functionals, the change in the
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wavenumbers and the mean field due to the pattern, to leading order, is


δκ

δ`

δh0

δu0

δv0

 =



∂A1

∂κ

∂A1

∂`

∂A1

∂h0

∂A1

∂u0

∂A1

∂v0

∂A2

∂κ

∂A2

∂`

∂A2

∂h0

∂A2

∂u0

∂A2

∂v0

∂R
∂κ

∂R
∂`

∂R
∂h0

∂R
∂u0

∂R
∂v0

∂Q1

∂κ

∂Q1

∂`

∂Q1

∂h0

∂Q1

∂u0

∂Q1

∂v0

∂Q2

∂κ

∂Q2

∂`

∂Q2

∂h0

∂Q2

∂u0

∂Q2

∂v0



−1


I1

I2

I3 − r
I4 − q1

I5 − q2

+ · · · (4.12)

where |I1|, |I2|, |I3−r|, |I4−q1| and |I5−q2| are small. The expression (4.12) determines
the change in wavenumbers (deviating from the values of κ, ` associated with the
dispersion relation; cf. § 5) and the deviation in the mean field associated with the
doubly periodic pattern.

5. Linearization about uniform patterns: the dispersion relation
The dispersion relation for the linearization about a uniform pattern is given by

D(κ, `) ≡ (κu0 + `v0)
2 − (g + σK2)K tanh Kh0 = 0, (5.1)

where κ and ` are the wavenumbers in the x- and y-directions respectively and

K =
√
κ2 + `2. (5.2)

In the setting of §§ 3–4, this dispersion relation is derived as follows. Let (h0, u0, v0, Z0)
be a fixed uniform pattern. Linearization of (4.3) about this pattern reduces to

κ J(u0)Ẑx̂ + `K(v0)Ẑŷ = A0 Ẑ (5.3)

where A0 is the symmetric operator

A0 = Hess(S − h0R − u0Q1 − v0Q2)(Z0).

Let Ẑ(x̂, ŷ, z) = Re (ζ(z)ei(x̂+ŷ)); then substitution into (5.3) leads to the multi-
parameter eigenvalue problem (where κ and ` are both considered as eigenparameters)

A0ζ = iκ J(u0)ζ + i`K(v0)ζ. (5.4)

Many of the properties of this eigenvalue problem are deduced from the fact that
A0 is a symmetric operator and J(u0) and K(v0) are skew-symmetric operators. These
properties are especially useful when the basic pattern is non-uniform. However, since
the linearization is about a uniform pattern, this system is easily solved explicitly:

ζ(z) = (Φ̃, η̃, γ̃1, γ̃2, p̃, w̃1, w̃2, φ̃(z), ũ(z), ṽ(z)),

with

γ̃1 = −iη̃/κ, γ̃2 = 0, p̃ = 0, w̃1 = iκη̃, w̃2 = i`η̃,

φ̃(z) = Φ̃
cosh Kz

cosh Kh0

, ũ(z) = iκφ̃(z) and ṽ(z) = i`φ̃(z),
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where Φ̃ and η̃ satisfy[
K tanhKh0 −i(κu0 + `v0)

i(κu0 + `v0) g + σK2

](
Φ̃

η̃

)
=

(
0

0

)
. (5.5)

The dispersion relation is then obtained by setting the determinant of the Hermitian
matrix in (5.5) to zero.

The dispersion relation is recast into the form

(u2
0 − gh0)κ

2 + 2u0v0κ`+ (v2
0 − gh0)`

2 + gh0K
2

(
1− (1 +WK2h2

0)
tanhKh0

Kh0

)
= 0,

where W = σ(gh2
0)
−1 is the Weber number.

When W = 0 and ` = 0 the dispersion relation reduces to

D(κ, 0) = (u2
0 − gh0)κ

2 + gh0κ
2

(
1− tanh κh0

κh0

)
= 0,

with the property that there exist real non-zero wavenumbers only if the uniform flow
is subcritical: u2

0 < gh0. Now, suppose ` 6= 0 but W = 0 and try to generalize this
result:

D(κ, `) = (κ`)

[
u2

0 − gh0 u0v0

u0v0 v2
0 − gh0

](
κ

`

)
+ gh0K

2

(
1− tanhKh0

Kh0

)
= 0. (5.6)

The determinant of the matrix associated with the quadratic form in (κ, `) is −gh0(u
2
0+

v2
0 − gh0) which is precisely the determinant in (3.7) (after multiplication by g). The

natural definition of super-criticality would correspond to positivity of this matrix –
but this matrix always has at least one negative eigenvalue (−gh0) with the other
equal to u2

0 + v2
0 − gh0. In other words, criticality of uniform patterns does not play

a clear role in determining when doubly periodic patterns can appear on a uniform
pattern.

Given u0, v0, h0, σ, and g, the fundamental requirement for the appearance of
doubly periodic patterns is that D(κ, `) = 0 has real solutions. Real solutions of the
dispersion relation (5.6) exist: this can be seen by diagonalizing the matrix associated
with the quadratic form in (κ, `) with a rotation matrix, and noting that this matrix
always has at least one negative eigenvalue.

Another informative way that the dispersion relation can be recast is as

D(κ, `) = gh0K
2

[
F2 cos2(θ − ϑ)− (1 +WK2h2

0)
tanhKh0

Kh0

]
= 0,

where

u0 = U0 cos θ, v0 = U0 sin θ, κ = K cos ϑ and ` = K sin ϑ,

and F2 = U2
0/(gh0). This form of the dispersion relation shows the importance of

the angle between the vectors (u0, v0) and (κ, `). When these vectors are aligned,
the dispersion relation reduces to the one-dimensional case, and when they are
orthogonal there are no real solutions of the dispersion relation. A complete analysis
of this dispersion relation and its dependence on θ − ϑ and W would be of great
interest, but we do not consider this further here. Our main interest is in establishing
that there exist values of (κ, `) such that the dispersion relation (5.1) has solutions, in
preparation for the study of nonlinear doubly periodic patterns near the flat state.
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6. Capillary–gravity short-crested waves in finite depth

In this section, nonlinear doubly periodic patterns near the flat state, when the
uniform velocity has a preferred direction, are studied using the theory of § 4 and we
show that this leads to a new characterization of short-crested Stokes waves travelling
on a finite-depth fluid, and includes oblique travelling waves in the same analysis.

The dispersion relation (5.1) is repeated here:

D(κ, `) = (κu0 + `v0)
2 − (g + σK2)K tanhKh0. (6.1)

For fixed u0, v0, h0, g and σ, this dispersion relation is a function of κ2 and `2.
Therefore solutions come in pairs (±κ,±`) and so for each (κ, `) the height of the
linearized doubly periodic pattern takes the general form

η(x, y) = A1e
i(κx+`y) + A2e

i(κx−`y) + A1e
−i(κx+`y) + A2e

−i(κx−`y), (6.2)

where A1 and A2 are complex amplitudes. In this section the weakly nonlinear patterns
associated with this basic form are studied. This formulation contains both oblique
Stokes capillary–gravity travelling waves (i.e. set A2 = 0) as well as capillary–gravity
short-crested Stokes waves, travelling in finite depth coupled with a mean flow.

For short-crested waves, when surface tension effects are neglected and the mean
flow is restricted, the previous third-order results of Hsu et al. (1979) are recovered.
In addition, the formulation leads to several new results on short-crested waves and
the interaction between short-crested waves and oblique travelling waves. The effect
of surface tension is new and the present formulation gives more comprehensive
information about the parameter structure and the mean flow interaction. The form
of the linear pattern (6.2) includes short-crested waves (when |A1| = |A2| 6= 0) as
well as two families of oblique travelling waves (when |A1| 6= 0 and |A2| = 0 or
|A1| = 0 and |A2| 6= 0). Consideration of both classes of waves leads to a coupled
system of amplitude equations. In the analysis of these coupled amplitude equations,
new degeneracies are found which show that near certain parameter values, oblique
travelling waves and short-crested waves interact leading to a new class of waves
bifurcating from short-crested waves.

To analyse the nonlinear problem, the vector-valued function Ẑ defined in (4.1) is
expanded in a double Fourier series in x̂ and ŷ, and the variational principle of § 4
is applied to solve for the coefficients in the Fourier series. In fact, the wave-height
potentials and the velocity potential are expanded in Fourier series and the other

seven components of Ẑ are determined from these potentials. Noting that γ̂1(x̂, ŷ) and
γ̂2(x̂, ŷ) are 2π-periodic in x̂ and ŷ, and have zero mean, the leading-order Fourier
expansion for the wave-height potentials is taken to be of the form

γ̂1(x̂, ŷ) = Re

[
A1

iκ
ei(x̂+ŷ) +

A2

iκ
ei(x̂−ŷ) +

A3

2iκ
e2i(x̂+ŷ) +

A4

2iκ
e2i(x̂−ŷ) +

A5

2iκ
e2ix̂

]
+ · · · , (6.3)

and

γ̂2(x̂, ŷ) = Re

[
A6

2i`
e2iŷ

]
+ · · · , (6.4)

where the Fourier coefficients A1, A2, . . . are complex amplitudes. There is considerable
freedom in choosing the form for γ̂1(x̂, ŷ) and γ̂2(x̂, ŷ), but their precise form is not
important as long as the function κ∂γ̂1/∂x̂+ `∂γ̂2/∂ŷ gives the required form for the
pattern height. With γ̂1(x̂, ŷ) and γ̂2(x̂, ŷ) of the form (6.3)–(6.4), the leading-order
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Fourier expansion for the pattern height is

η̂(x̂, ŷ) = h0 + κ
∂γ̂1

∂x̂
+ `

∂γ̂2

∂ŷ

= h0 + Re [A1e
i(x̂+ŷ) + A2e

i(x̂−ŷ) + A3e
2i(x̂+ŷ) + A4e

2i(x̂−ŷ)

+A5e
2ix̂ + A6e

2iŷ] + · · · . (6.5)

For the velocity potential the leading-order Fourier expansion takes the form

φ̂(x̂, ŷ, z) = Re

[
coshKz

coshKh0

(B1e
i(x̂+ŷ) + B2e

i(x̂−ŷ))

+
cosh 2Kz

cosh 2Kh0

(B3e
2i(x̂+ŷ) + B4e

2i(x̂−ŷ))

+
cosh 2κz

cosh 2κh0

B5e
2ix̂ +

cosh 2`z

cosh 2`h0

B6e
2iŷ + · · ·

]
. (6.6)

The variable p is independent of x and y and is therefore set at some constant
value (here we set it equal to the value associated with the flat state). The other five

components of the vector Ẑ are determined from equation (4.1) to be

Φ̂ = φ̂|z=η̂ , û = u0 + κφ̂x̂, v̂ = v0 + `φ̂ŷ,

and

ŵ1 = κη̂x̂/
√

1 + κ2η̂2
x̂ + `2η̂2

ŷ , ŵ2 = `η̂ŷ/
√

1 + κ2η̂2
x̂ + `2η̂2

ŷ ,

with φ̂, γ̂1, γ̂2 and η̂ given by the Fourier expansions (6.3)–(6.6).
The expressions (6.3)–(6.6) are substituted into the six functionals S, A1, A2, R,

Q1 and Q2. The explicit expressions for these functionals evaluated on the Fourier
series are given in Appendix B. The Lagrange functional is then

F(Ẑ , κ, `, h0, u0, v0) =S(Ẑ)− κA1(Ẑ)− `A2(Ẑ)− h0R(Ẑ)− u0Q1(Ẑ)− v0Q2(Ẑ),

where F is now considered as a function of the Fourier coefficients and Lagrange
multipliers. Expressions for Aj , Bj for j = 1, 2, . . . are obtained by solving the algebraic
equations

∂F
∂Aj

=
∂F
∂Bj

= 0 for j = 1, 2 . . . .

The coefficients Bj (j = 1, 2, . . .) are obtained by solving the equations ∂F/∂Bj = 0,

B1 = i
κu0 + `v0

KT10

(
A1 −KT

2
10 + 2

2T10

A1A3 − K2

8

T 2
10 − 2

T 2
10

A1|A1|2
)

−i
(κu0 − `v0)(κ

2 − `2)

2K2T 2
10

(A2A5 + A2A6)− i
u0κ

2

KT10T21

A2A5 − i
v0`

2

KT10T22

A2A6

+i
1

4K2T 2
10T21T22

[
T22(−u0κ)(4κ3 +KT10T21(11κ2 − `2))

−v0`T21(KT10T22(−κ2 + 3`2)− 4`3)
]
A1|A2|2 + · · · ,
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B2 = i
κu0 − `v0

KT10

(
A2 −KT

2
10 + 2

2T10

A2A4 − K2

8

T 2
10 − 2

T 2
10

A2|A2|2
)

−i
(κu0 + `v0)(κ

2 − `2)

2K2T 2
10

(A1A5 + A1A6)− i
κu2

0

KT10T21

A1A5 + i
v0`

2

KT10T22

A1A6

+i
1

4K2T 2
10T21T22

[
T22(−u0κ)(4κ3 +KT10T21(11κ2 − `2))

+v0`T21(KT10T22(−κ2 + 3`2)− 4`3)
]
A2|A1|2 + · · · ,

B3 = i
κu0 + `v0

KT20

(
A3 − K

2T10

A2
1

)
+ · · · , B4 = i

κu0 − `v0

KT20

(
A4 − K

2T10

A2
2

)
+ · · · ,

B5 = i
u0

T21

(
A5 − κ2

KT10

A1A2

)
+ · · · , B6 = i

v0

T22

(
A6 − `2

KT10

A1A2

)
+ · · · .

The functional F is then written as a function of the coefficients Aj , j = 1, . . . , and

expressions for these amplitudes are obtained by solving ∂F/∂Aj = 0, for j = 3, . . . ;
we find

A3 =
(κu0 + `v0)

2

4T 2
10

(
3− T 2

10

gT 2
10 − σK2(3− T 2

10)

)
A2

1 + · · · ,

A4 =
(κu0 − `v0)

2

4T 2
10

(
3− T 2

10

gT 2
10 − σK2(3− T 2

10)

)
A2

2 + · · · ,

A5 =
κ[(κu0)

2([3K2T 2
10 − κ2 + `2]T21 − 4KκT10) + `2v2

0T21(K
2T 2

10 + κ2 − `2)]

2K2T 2
10(κT21[g + 4σκ2]− 2KT10[g + σK2])

A1A2

+ · · · ,

A6 =
(κu0)

2(K2T 2
10 − κ2 + `2)T22 + (`v0)

2([3K2 + κ2 − `2]T22 − 4K`T10)

2K2T 2
10(T22[g + 4σ`2]− 2`v2

0)
A1A2

+ · · · ,
where

T10 = tanh(Kh0), T20 = tanh(2Kh0), T21 = tanh(2κh0) and T22 = tanh(2`h0).

Back substitution of the Fourier coefficients into the Lagrange functionalF results
in

F = α1|A1|2 + α1|A2|2 + 1
2
α2|A1|4 + α3|A1|2|A2|2 + 1

2
α2|A2|4 + · · · . (6.7)

Setting the derivatives ∂F/∂Aj = 0 for j = 1, 2 yields the following system of
amplitude equations:

α1A1 + α2A1|A1|2 + α3A1|A2|2 + · · · = 0,

α1A2 + α3A2|A1|2 + α2A2|A2|2 + · · · = 0.

}
(6.8)

These equations contain the leading-order bifurcation theory for the patterns with
elevation (6.5) and velocity potential (6.6). To simplify the expressions, we rotate
coordinates so that the uniform velocity (u0, v0) is aligned with the x-axis, i.e. v0 = 0.
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In this case, expressions for the coefficients in (6.8) are

α1 =
κ2u2

0 − gKT10(1 + τ)

KT10

,

α2 = gK2

(
3
8
τ− (1 + τ)(2T 2

10 − 1)

2T 2
10

− (1 + τ)2(3− T 2
10)

2

8T 2
10(T

2
10 − τ(3− T 2

10))
+

(1 + τ)2(1− T 2
10)

2

4T 2
10

)
,

α3 = 1
4
gK2

(
τ ( 3κ4 + 3`

4 − 2κ2`
2

) +
( `

2 − κ2 + T 2
10 )2 (1 + τ)2

T 2
10 ( 1 + 4 τ `

2
)

+
(T 2

10 − 1)2 (1 + τ)2

T 2
10

+
κ (1 + τ)2 [2]2

T 2
10 T21 [1]

+ 8
κ3 (1 + τ)

T21 T10

+ 4 (`
2 − 3κ2) (1 + τ)

)
,

where

κ =
κ

K
, ` =

`

K
,

[1] = κT21 ( 1 + 4 τ κ2 )− 2T10(1 + τ),

[2] = ( 3T 2
10 + `

2 − κ2)T21 − 4 κT10,

τ = σK2/g = W (Kh0)
2,

and τ is the Bond number. See Menasce (1995) for complete details of these calcula-
tions, including the case v0 6= 0.

It is useful here to review the role of the parameters, with reference to the discussion
surrounding equation (4.11). In the context of the constrained variational principle of
§ 4, the equations (6.8) are an intermediate step, since it is the values of the constraint
sets that are prescribed. This viewpoint is dramatically different from the classical
view of amplitude equations. First, the coupled system (6.8) is solved for A1 and A2

as functions of the five parameters κ, `, h0, u0 and v0 (assuming that (6.8) is non-
degenerate, an issue which we consider in detail below). All the Fourier coefficients

are expressed as functions of these five parameters, resulting in the vector Ẑ as a
function of (x̂, ŷ) and these five parameters. Substitution into the constraint sets in
(4.7) leads to the identities

A1(Ẑ(x̂, ŷ; κ, `, h0, u0, v0)) = a1,

A2(Ẑ(x̂, ŷ; κ, `, h0, u0, v0)) = a2,

R(Ẑ(x̂, ŷ; κ, `, h0, u0, v0)) = r,

Q1(Ẑ(x̂, ŷ; κ, `, h0, u0, v0)) = q1,

Q2(Ẑ(x̂, ŷ; κ, `, h0, u0, v0)) = q2.

Inversion of these five equations, assuming the non-degeneracy condition (4.8) is
satisfied, leads to κ, `, h0, u0 and v0 as functions of a1, a2, r, q1 and q2.

On the other hand, the values of the parameters κ, `, h0, u0 and v0 can be fixed
(this is closer to the classical approach to the solution of amplitude equations).
Which approach is taken depends on which is appropriate for the particular physical
question: whether bulk quantities such as mass flux and pressure head are fixed or
whether mean quantities such as elevation and mean velocity can be fixed. Here, in
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order to compare with the classical results of Hsu et al. (1979), we consider κ, `, h0,
q1 (or rather |A1|) fixed, v0 = 0, and determine u0.

For |A1| + |A2| sufficiently small, the solutions of (6.8) are classified as follows.
The flat state corresponds to |A1| = |A2| = 0. Oblique travelling waves correspond
to |A2| = 0 and |A1| 6= 0 (or |A1| 6= 0 and |A2| = 0) in which case (6.8) reduces to
α1 + α2|A1|2 + · · · = 0, or

u2
0 =

gK

κ2
T10(1 + τ)− KT10

κ2
α2|A1|2 + · · · ,

which yields the well-known result for the change in the wave speed (identifying u0

with the wave speed) of oblique capillary–gravity travelling waves.
When |A1| 6= 0 and |A2| 6= 0 the system (6.8), truncated at third order, reduces to(

α2 α3

α3 α2

)( |A1|2
|A2|2

)
= −

(
α1

α1

)
. (6.9)

This equation has a unique solution when α2
2 6= α2

3 and the solution is

|A1|2 = |A2|2 = − α1

α2 + α3

.

This class of solutions corresponds precisely to short-crested Stokes waves. Another
way to write this expression is α1 + (α2 + α3)|A1|2 = 0 or

u2
0 =

gK

κ2
T10(1 + τ)− KT10

κ2
(α2 + α3)|A1|2 + · · · , (6.10)

where the · · · are a reminder that higher-order terms are being neglected. In the form
(6.10), the amplitude correction of the ‘wave-speed’ u0 is easily compared with the
results of Hsu et al. (1979). With τ = 0 and the restricted mean flow (i.e. v0 = 0 and
h0 set at the flat state), it is straightforward to show that the expression for α2 + α3

reduces to the coefficient ω2 of Hsu et al. (1979, equation (56)). Note also that the
short-crested waves reduce to transverse standing waves when κ = 0, and in this case
the present coefficient α2 +α3 reduces to equation (34) of Concus (1962) for capillary–
gravity standing waves. Another check is provided when comparing the coefficient
α2 + α3 with equation (5.26) of Hogan et al. (1988). We performed this comparison
by taking the deep water limit of our results and the short-crested wave limit of the
results of Hogan et al. (1988). Recall that they allow for different wavenumbers in
the x- and y-directions.

When α2 = α3 or α2 = −α3 the determinant in (6.9) vanishes and higher-order terms
need to be included. When α2 + α3 < 0, the phase velocity of the short-crested wave
increases with amplitude, whereas when α2 + α3 > 0, it decreases. In water of infinite
depth, in the absence of surface tension, α2 + α3 vanishes for κ = 0.374. This result
was discovered numerically by Roberts (1983) (see his figure 5). Here, this singularity
is extended to the case of finite depth and non-zero surface tension and the results
are shown in figure 2.

The regions of positive and negative values for α2 + α3 are shown in figure 2 in the
plane with coordinates (tanh (m), tanh (n)) where m = κh0 and n = `h0. The curves Γ1

and Γ3 identify a sign change in α2 + α3, hence for values of m and n lying on these
curves α2 + α3 = 0. The curves Γ2 and Γ4 are the loci of the zeros of the denominator
of α2 + α3. The consequence of this singularity is that there is more than one family
of short-crested waves for a range of wave speeds near this singularity.

The curves Γ2 and Γ4 are associated with resonances of the linear problem: two
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Figure 2. Sign of the coefficient α2 + α3 in (6.10) in the [tanh (κh0), tanh(`h0)]-plane for a range
of fixed values of the Bond number τ, which is proportional to surface tension. In each plot,
the bottom-left corner corresponds to shallow water; the top-right to deep water; the top-left to
near standing waves; and the bottom-right to nearly progressive waves. A positive value means
that the phase velocity of the short-crested wave increases with amplitude. The curves Γ1 and
Γ3 represent the zeros of α2 + α3 while Γ2 and Γ4 represent the poles of α2 + α3. These poles
correspond to linear resonances. In water of infinite depth, in the absence of surface tension, α2 +α3

vanishes for κ = 0.374. The values of the Bond number for each figure are (a) τ = 0, (b) τ = 0.05,
(c) τ = τ∗(= 0.2656), (d) τ = 0.5, (e) τ = 0.7.
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waves of differing wavenumbers have the same linear frequency. For values of (m, n)
on the curve Γ2, defined by

Γ2 = {(m, n) : m2 + n2 = (tanh−1)2(
√

3τ/(1 + τ))},
the values (2m, 2n) also satisfy the dispersion relation. This is the generalization of
the well-known Wilton ripples to short-crested waves. For points close to the curve
Γ2, the values of A3 and A4 in the solution for the pattern height η̂(x̂, ŷ) (and B3, B4

in the expansion for φ̂(x̂, ŷ, z)) become very large. For values of (m, n) lying on the
curve Γ4, defined by

Γ4 =

{
(m, n) :

(m2 + n2 + 4τm2)

(m2 + n2)3/2
=

(1 + τ)

m

tanh
√
m2 + n2

tanhm
(1 + tanh2 m)

}
,

the value (2m, 0) also satisfies the dispersion relation, and for points near Γ4 the
values of A5 and B5 become very large.

Without surface tension the curves Γ2, Γ3 and Γ4 are reduced to the origin, so the
(tanh (m), tanh (n))-plane is divided in two regions by the curve Γ1. When the Bond
number τ is increased there are five regions as shown in figure 2. Note that for values
of τ greater than τ∗ ' 0.2656 (τ∗ is the real root of 136τ3 + 66τ2 + 3τ− 8) the curve Γ1

becomes the whole line tanh (n) = 1. For τ = 1/2 the curve Γ2 is the union of the two
lines tanh (m) = 1 and tanh (n) = 1. There are only three domains left where α2 + α3

changes of sign. The regions of positive and negative values of α2 + α3 for values of
τ greater than 1/2 are shown on figure 2(e).

7. A new bifurcation of short-crested Stokes waves
The system (6.8) possesses solutions other than travelling waves or short-crested

waves when α2 = α3, and these new solutions only become apparent by treating the
oblique travelling waves and short-crested waves in the same analysis: indeed, it turns
out that these solutions form a connecting branch between the short-crested waves
and the oblique travelling waves.

When α2 = α3, the pair of amplitude equations (6.8) reduces to

α1 + α2(|A1|2 + |A2|2) + · · · = 0,

α1 + α2(|A1|2 + |A2|2) + · · · = 0.

}
(7.1)

For a non-degenerate solution, higher-order terms in the amplitude need to be
computed. However, the general form of these coupled equations is known to arbitrary
high order; that is, the equations are D4-equivariant. Therefore, even though we
do not know the precise value of the coefficients of the higher-order terms, general
conclusions can be drawn about behaviour of solutions. In fact this type of degeneracy
has been studied by Bridges & Dias (1990) and Dias & Bridges (1994) in another
context. The degeneracy α2 = α3 leads to a secondary bifurcation of solutions and,
in the present context, this secondary branch connects the branch of short-crested
waves with the branch of oblique travelling waves. Even in water of infinite depth,
in the absence of surface tension, α2 − α3 can vanish: it vanishes for κ = 0.893. As
far as we are aware, this class of three-dimensional solutions has not been previously
recognized.

In figure 3 one sees that, for a given Bond number not in the interval [0.5, 0.649],
there always exists a curve in parameter space where α2 = α3. While the degeneracy
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α2 = α3 occurs only on a curve, the secondary bifurcation of new waves persists
at finite amplitude for large regions of parameter space and should therefore be
observable.

The branch of secondary waves is expected to also be multi-periodic in space but
the amplitudes of the two basic modes, |A1| and |A2|, depart from being equal as
the branch bifurcates from the branch of short-crested waves. Therefore, near the
parameter values associated with the singularity, the new waves appear as steady but
slightly distorted short-crested waves, but at large amplitude they may appear quite
different.

8. Concluding remarks
In this paper, a new formulation of the problem of steady doubly periodic patterns

on a finite-depth fluid, including the effects of a uniform mean flow, is presented.
One of the consequences of this formulation is a new characterization of short-crested
waves and a framework within which short-crested waves and oblique travelling waves
are analysed together. By analysing the coupled problem, including short-crested and
oblique travelling waves, we found – already at low amplitude – that there is a region
in parameter space with a secondary branch connecting these two families of waves.

One of the difficulties with analysing waves and patterns in a finite-depth fluid is the
role of parameters. The variational formulation presented in § 4 showed that there are
naturally ten parameters which come in dual pairs. Therefore a branch of such waves
requires specification of exactly five parameters. Although the variational structure
was important for identifying it, this parameter structure can be usefully applied to
other methods for the analysis of steady patterns. For example, these properties of
the parameter structure should also be useful for numerical computation of large-
amplitude steady patterns in finite depth.

The theory in this paper can contribute to a linear stability theory for short-crested
waves in shallow water – or in general, any steady multi-periodic pattern – in several
ways. A fundamental question about the stability of waves and patterns in shallow
water is the implication of mean flow for stability and instability. For example, in
two space dimensions (one horizontal), it is known that the Stokes travelling wave
is stable to the Benjamin–Feir mechanism when the depth is sufficiently small, and
this stabilization is due to mean flow effects. But the Stokes wave is unstable even in
shallow water when transverse perturbations are included. However no comprehensive
study of the role of mean flow for large-amplitude waves or waves with a significant
mean flow component has been given. For example, the seminal numerical study of
McLean (1982) considered the mean flow frozen at a particular value and then varied
only the wave parameters. Therefore it is an open question whether large variations
in mean flow can alter dramatically the stability of even two-dimensional waves. In
three space dimensions (two horizontal), experimental evidence of Hammack et al.
(1989, 1995) strongly suggests that there are large classes of multi-periodic patterns –
particularly hexagonal patterns – which are stable in shallow water. The formulation
in this paper points out that the parameter space for steady multi-periodic patterns is
quite large, and in this parameter space there may be several regions of stability and
instability. A division of this parameter space into such regions would be of great
interest.

The parameter structure of multi-periodic patterns can contribute to a linear
stability analysis in another way. In Bridges (1996) it is shown that Jacobian matrices
on parameter space such as (4.8) contain information about linear stability exponents,
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and points in parameter space where the determinant changes sign are often associated
with changes in stability. In Bridges (1998), this stability theory is extended to multi-
phase patterns and quasi-periodic patterns. Preliminary results show that this theory
applies to give a linear stability theory for multi-periodic patterns in shallow water –
particularly short-crested waves – using the parameter structure and Jacobian matrices
on parameter space.

This research was partially supported by a grant from Alliance, the Franco-British
Joint Research Programme of the British Council, with Project Number PN 98.161.

Appendix A. Expressions for ∇S(Z), J(u) and K(v)

The matrix-valued operators appearing in (2.10) have the following expressions:

J(u) =



0 −u 0 0 0 0 0 0 0 0

u 0 0 0 0 −σ 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 σ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0


and

K(v) =



0 −v 0 0 0 0 0 0 0 0

v 0 0 0 0 0 −σ 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 σ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0


.

Figure 3. Sign of the coefficient α2−α3 in the [tanh(κh0), tanh(`h0)]-plane for a range of fixed values
of the Bond number τ. The vanishing of this coefficient is associated with a secondary bifurcation
of solutions. The curves γ1 and γ2 in this figure represent the zeros of α2 − α3 while Γ2 and Γ4

represent the poles of α2− α3. The poles correspond to linear resonances. In water of infinite depth,
in the absence of surface tension, α2 − α3 vanishes for κ = 0.893. The values of the Bond number
for each figure are (a) τ = 0, (b) τ = 0.05, (c) τ = 0.5, (d) τ = 0.65, (e) τ = 0.7, (f) τ = 0.725,
(g) τ = 0.8.
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The gradient of S(Z), defined in (2.14), with respect to the inner product (2.12) is

∇S(Z) =



∂S/∂Φ

∂S/∂η

∂S/∂γ1

∂S/∂γ2

∂S/∂p

∂S/∂w1

∂S/∂w2

∂S/∂φ

∂S/∂u

∂S/∂v


=



−φz|z=η
1
2
(u2 + v2 + φ2

z)|z=η − gη + p

0

0

η

σw1/
√

1− w2
1 − w2

2

σw2/
√

1− w2
1 − w2

2

φzz

u

v


.

Appendix B. Evaluation of the functionals S,A1,A2,R,Q1,Q2 in § 6
Expressions for the functionals S, A1, A2, R, Q1 and Q2 evaluated on the Fourier

expansion of the doubly periodic pattern (6.3)–(6.6) are

S = 1
4
K2 h0 (1− T 2

10) (|B1|2 + |B2|2)
− 1

8
K3 T10 Re (A2

1B1
2

+ A2
2B2

2
)− 1

8
K2 (1 + T 2

10) Re (A3B1
2

+ A4B2
2
)

− 1
2
K T10 Re (κ2 A1A2B1B2 + `2 A1A2B1B2)

+ 1
4

(`2 − κ2 −K2 T 2
10) Re (A5B1B2)− 1

4
(`2 − κ2 +K2 T 2

10) Re (A6B1B2)

+ 1
2
K2 (1− T10T20) Re (A1B1B3 + A2B2B4)

+ 1
2
κ (κ−K T10 T21) Re (A1B2B5 + A2B1B5)

+ 1
2
` (`−K T10 T22) Re (A1B2B6 + A2B1B6)

+K2 h (1− T 2
20) (|B3|2 + |B4|2) + κ2 h (1− T 2

21) |B5|2 + `2 h (1− T 2
22) |B6|2

+ 1
2

Im [(κu0 + `v0)A1B1 + (κu0 − `v0)A2B2]

+ 1
16
K2 κ u0 |A1|2 Im (A1B1 + 2A2B2) + 1

16
K2 κ u0 |A2|2 Im (2A1B1 + A2B2)

+ 1
2
K T20 Im [(κu0 + `v0)A

2
1B3 + (κu0 − `v0)A

2
2B4]

+κ u0 Im (A3B3 + A4B4 + A5B5) + ` v0 Im (A3B3 − A4B4 + A6B6)

+ 1
16
K2 ` v0 |A1|2 Im (A1B1 − 2A2B2) + 1

16
K2 ` v0 |A2|2 Im (2A1B1 − A2B2)

+κ2 u0 T21 Im (A1A2B5) + `2 v0 T22 Im (A1A2B6)

+ 1
4
K κu0 T10 Im [(A6B2 − A3B1 − A5B2)A1 + (A6B1 − A4B2 − A5B1)A2]

+ 1
4
K ` v0 T10 Im [(A5B2 − A3B1 − A6B2)A1 + (A4B2 − A5B1 + A6B1)A2]

− 1
4
g (|A1|2 + |A2|2 + |A3|2 + |A4|2 + |A5|2 + |A6|2) + 1

4
σ K2 (|A1|2 + |A2|2)

− 9
64
σ K4 (|A1|4 + |A2|4)− 9

16
σ (K4 − 8

3
κ2 `2) |A1|2|A2|2 + σ K2 (|A3|2 + |A4|2)

+σ κ2 |A5|2 + σ `2 |A6|2 + 1
2

(u0
2 + v0

2) h0 + ph0 + · · · .
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The mean flow constraints are as follows:

R = p, Q1 = u0h0 + κ Im [Q̂1] and Q2 = v0h0 + ` Im [Q̂2],

where

Q̂1 = 1
2

(A1B1 + A2B2)

+ 1
16
K2 |A1|2 (A1B1 + 2A2B2) + 1

16
K2 |A2|2 (2A1B1 + A2B2)

+ 1
2
K T20 (A2

1B3 + A2
2B4) + A3B3 + A4B4 + A5B5 + κT21 A1A2B5

+ 1
4
K T10 [A1(A6B2 − A3B1 − A5B2) + A2(A6B1 − A4B2 − A5B1)] + · · · .

and

Q̂2 = 1
2

(A1B1 − A2B2)

+ 1
16
K2 |A1|2 (A1B1 − 2A2B2) + 1

16
K2 |A2|2 (2A1B1 − A2B2)

+ 1
2
K T20 (A2

1B3 − A2
2B4) + A3B3 − A4B4 + A6B6 + `T22 A1A2B6

+ 1
4
K T10 [A1(A5B2 − A3B1 − A6B2) + A2(A6B1 + A4B2 − A5B1)] + · · · .

The wave constraints (components of wave-action flux) are as follows:

κA1 = 1
2
σ κ2 (|A1|2 + |A2|2) + 1

4
(κ2/K) (T10 +Kh[1− T 2

10]) (|B1|2 + |B2|2)
+ 1

2
κ u0 Im (A1B1 + A2B2) + 1

4
σ κ2 (`2 − 3κ2) |A1|2|A2|2

+ 1
16
K2 κ u0 |A1|2 Im (A1B1 + 2A2B2) + 1

16
K2 κ u0 |A2|2 Im (2A1B1 + A2B2)

+ 1
8
K κ2 T10 [2 (|A1|2 + |A2|2) (|B1|2 + |B2|2)−Re (A2

1B1
2

+ A2
2B2

2
)]

+ 1
2
K κu0 T20 Im (A2

1B3 + A2
2B4) + κ2 u0 T21 Im (A1A2B5)

+ 1
4
K κu0 T10 Im [(A6B2 − A3B1 − A5B2)A1 + (A6B1 − A4B2 − A5B1)A2]

− 1
4
κ2 Re (A3B1

2
+ A4B2

2
) + 1

2
K κ2 T10 Re (A1A2B1B2 − A1A2B1B2)

+ 1
2
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− 3
16
σ K2 κ2 (|A1|4 + |A2|4) + κ u0 Im (A3B3 + A4B4 + A5B5)

+2 σ κ2 (|A3|2 + |A4|2 + |A5|2) + 1
2

(κ2/K) (T20 + 2Kh[1− T 2
20]) (|B3|2 + |B4|2)

+ 1
2
κ (T21 + 2κ h [1− T 2

21]) |B5|2 + · · · ,

`A2 = 1
2
σ `2 (|A1|2 + |A2|2) + 1

4
(`2/K) (T10 +Kh[1− T 2

10]) (|B1|2 + |B2|2)
+ 1

2
` v0 Im (A1B1 − A2B2) + 1

4
σ `2 (κ2 − 3`2) |A1|2|A2|2

+ 1
16
K2 ` v0 |A1|2 Im (A1B1 − 2A2B2) + 1

16
K2 ` v0 |A2|2 Im (2A1B1 − A2B2)

+ 1
8
K `2 T10 [2 (|A1|2 + |A2|2) (|B1|2 + |B2|2)−Re (A2

1B1
2

+ A2
2B2

2
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+ 1
2
K ` v0 T20 Im (A2

1B3 − A2
2B4) + `2 v0 T22 Im (A1A2B6)
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+ 1
4
K ` v0 T10 Im [(A5B2 − A3B1 − A6B2)A1 + (A4B2 − A5B1 + A6B1)A2]

− 1
4
`2 Re (A3B1

2
+ A4B2

2
) + 1

2
K `2 T10 Re (A1A2B1B2 − A1A2B1B2)

+ 1
2
`2 Re (A5B1B2 − A6B1B2 + 2A1B1B3 + 2A2B2B4 + 2A1B2B6 + 2A2B1B6)

− 3
16
σ K2 `2 (|A1|4 + |A2|4) + ` v0 Im (A3B3 − A4B4 + A6B6)

+2 σ `2 (|A3|2 + |A4|2 + |A6|2) + 1
2

(`2/K) (T20 + 2Kh[1− T 2
20]) (|B3|2 + |B4|2)

+ 1
2
` (T22 + 2` h [1− T 2
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